相关文章

乳化剂对苯丙乳液的影响

国外关于乳化剂的研究起始于20世纪50-60年代,当时人们研究较多的是表面活性引发剂和表面活性链转移剂;其研究热潮出现在20世纪末和21世纪初,随着可聚合乳化剂的优异性能逐渐被人们发现,研究越来越集中在可聚合乳化剂上面。具有代表性的研究是由欧盟资助、Guyot A[3]等领导的由8个学术和5个工业实验室联合进行的系统研究。他们系统地研究了影响可聚合乳化剂应用性能的诸多因素,同时探讨了怎样使可聚合乳化剂达到最佳使用效果。在此之后的系统研究渐少,人们更多地倾向于进行新结构反应型乳化剂的合成与性能研究,以期找到性能更加优异的品种和开拓其应用领域等。另一方面,最近研究较多的是将可聚合乳化剂应用到微乳聚合中制备无机或有机纳米粒子。国内关于反应型乳化剂的研究始于近几年,目前比较热门的几种可聚合乳化剂有阴离子型 、阳离子型马来酸酯类的和丙烯酰胺可聚合乳化剂等。

乳化剂及乳液体系对苯丙乳液的聚合和性能影响最大[4],乳化剂的结构、临界胶束浓度(CMC)或用量以及初始阶段乳化剂与单体配比对乳液的粒径及其分布、黏度、最低成膜温度、聚合稳定性以及涂膜连续性、完整性、粘附力、耐水性等有着十分重要的影响。

阴、非离子乳化剂的稳定机理不同,阴离子型靠静电力使乳液稳定,而非离子乳化剂靠分子的空间位阻维持乳液稳定,这就决定了非离于乳化剂分于远大于阴离子乳化剂。阴离子乳化剂乳化效率要高于非离子乳化剂。单独靠非离子乳化剂很容易破乳,单独用阴离子乳化剂存在电解质稳定性差等弊端。阴非复配乳化剂或由这两类乳化剂化学合成的复合乳化剂比单独用一种乳化剂效果要好。两者合理并用或作为复合物使用,可使这两种乳化剂交替地吸附在乳胶粒的表面,降低同一乳胶粒表面的静电斥力.增强乳化剂在胶粒上的吸附牢度,降低表而的电荷密度,使带负电的自由基更易进入乳胶粒中.提高乳液聚合速率。当两者并用时阴离子乳化剂吸附在聚合物颗粒表而并电离,形成表面负电层,从紧密层到体系本体形成电位,其静电斥力保持了体系的稳定;非离子乳化剂吸附在颗粒表面形成弹性水化层来阻止胶粘的聚沉。这两种性质不同的稳定机理,大大提高乳液的机械稳定性、钙离子稳定性、热稳定性等。阴离子和非离子型表而活性剂的混合物是水不溶单体的有效乳化剂。可以不同方法,控制胶粒大小及分布、乳液黏度、乳液聚合反应速率等。

近年来,采用反应型乳化剂制备微皂乳液是热点之一。反应型乳化剂除了具有传统乳化剂的亲水基、亲油基之外,还具有能参与聚合的反应性基团。按照引入的反应性基团参与聚合方式的不同,反应型乳化剂被分为3大类[5]:(1)引入具有引发剂作用的基团,构成表面活性引发剂;(2)引入具有链转移作用的基团,构成表面活性链转移剂;(3)引入可聚合的基团,构成表面活性单体,又称可聚合乳化剂。但表面活性引发剂和表面活性链转移剂会对聚合动力学产生影响,且表面活性引发剂在很多时候引发效率不高,而表面活性链转移剂会对聚合物的分子量产生影响。因此人们的研究更多地集中在可聚合乳化剂上面。因此,苯丙乳液用的乳化体系应以阴离子乳化剂、非离子乳化剂混用或经反应制得的复合乳化剂为主体,并通过改变阴、非乳化剂的种类、配比和用量来调节乳液的性能,使其满足苯丙乳液不同的性能要求。